6502

From SizeCoding
Revision as of 05:52, 6 July 2020 by Superogue (talk | contribs) (Getting something on screen)

Jump to: navigation, search

Introduction

Wanting to start sizecoding on a 6502 platform in this day and age can be tough.

So here is a bit of help to get you started:

The 6502 processor

The 6502 processor can be seen as the 8bit micro ARM chip. It has only has 3 registers (Accumilator, IX and IY registers) and only a handful of instructions to work with.

Registers

To be added.

Zero page

When using the 6502 for sizecoding, you'll mostly be working from zeropage

Atari 8bit family

The Atari XE/XL systems consists of the 6502 with custom hardware for graphics and sound.

Setting up

Setting up your development platform for the Atari 8bit systems is quite easy, first get the following tools:

  • Assembler: MADS Assembler - This assembler has nice macros for creating Binaries and SNA snapshot files out of the box. You can download it at https://mads.atari8.info/
  • Emulator(s): I Found Altirra to work best for my usecase. Make sure to use the original Rev2 rom for best compatibility.

Special Memory Adresses

  • FRAMECOUNTER_HIGH = 19
  • FRAMECOUNTER_LOW = 20

Video display

Video display on the Atari 8bit systems use the TIA chip, it has the following video modes:

To be added soon.

Getting something on screen

To be added soon.

SDMCTL	= $022f
HPOSP0  = $d000
SIZEP0  = $d008
GRAFP0  = $d00d
COLPM0  = $d012

FRAMECOUNTER_HIGH = 19
FRAMECOUNTER = 20
WSYNC	= $d40a
VCOUNT	= $d40b

sinewave	= $0600		; to $06ff

		org $80

main	
	; disable all graphics/colors
	ldx #0
	stx SDMCTL	

	ldy #$7f
	sty SIZEP0	; size p0=127
		
	ldx #0
	ldy #$3f
make_sine:
value_lo
			lda #0
			clc
delta_lo
			adc #0
			sta value_lo+1
value_hi
			lda #0
delta_hi
			adc #0
			sta value_hi+1
 
			sta sinewave+$c0,x
			sta sinewave+$80,y
			eor #$7f
			sta sinewave+$40,x
			sta sinewave+$00,y
 
			lda delta_lo+1
			adc #8
			sta delta_lo+1
			bcc nothing
			inc delta_hi+1
nothing
			inx
			dey
			bpl make_sine

updateloop:
		; vblank
		lda VCOUNT
		bne updateloop

		; clear graphics
		sta HPOSP0
		sta GRAFP0

		ldy #0
                lda #47
		sta COLPM0
yloop:
		tya           ; graphics shape = y
		sta WSYNC
		sta GRAFP0

		; a = sin(frame+y)+48
		tya	
		adc FRAMECOUNTER
		tax
		lda sinewave,x
		adc #48
		sta HPOSP0
                
                iny
                bne yloop
		jmp updateloop

		run main

Sound

The Atari 8bit systems use the Pokey chip to generate sound. To be added soon.

Make some noise

To be added soon.


Additional Resources

Sizecoding resource for the Atari 8bit are sparse

  • Fready's github (link to be added)

Atari Lynx

The Atari Lynx consists of the 6502 with custom hardware for graphics and sound.

Setting up

Setting up your development platform for the Atari Lynx:

  • Assembler: -
  • Emulator(s): -

Video display

To be added soon.

Getting something on screen

To be added soon.


Sound

To be added soon.

Make some noise

To be added soon.

Additional Resources

Sizecoding resource for the Atari Lynx are sparse

  • 42Bastian's website (link to be added)

Commodore 64

The Commodore systems consists of the 6502 with custom hardware for graphics and sound.

Setting up

Setting up your development platform for the Commodore systems is quite easy, first get the following tools:

  • Assembler: To be added
  • Emulator(s): VICE is the way to go

Video display

Video display on the Commodore, it has the following video modes:

To be added soon.

Getting something on screen

To be added soon.


Sound

The Commodore 64 uses the famous SID chip to generate sound. To be added soon.

Make some noise

To be added soon.

Additional Resources

  • links to be added